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Abstract. We investigate a hydrogen-like atom (or any other system with a Coulomb potential)
confined to a space which is bounded by a paraboloid. The nucleus of the atom resides at the
focus of the paraboloid and we require the electronic wavefunction to vanish on the paraboloid.
We derive an exact implicit analytic solution to the problem and also explicit analytic expressions
for the wavefunctions and eigenenergies in the so-called strong-shift regime. We also discuss
the influence of the boundary on the permanent dipole moments of the eigenstates. Finally, we
investigate this system in WKB-approximation and give the Bohr–Sommerfeld quantization rule
which is different from the usual rule due to the new boundary condition.

1. Introduction

In this paper we deal with a kind of problem which is almost as old as quantum mechanics
itself. Usually one considers quantum systems in an infinite environment, i.e. the boundary
conditions are at infinity. Many of the standard problems in quantum mechanics such as
the harmonic oscillator or the hydrogen atom are solved with vanishing wavefunctions at
infinity. The energy spectra as we know them are calculated for this specific choice of
boundary conditions. Of course, in many situations it is well justified to use these boundary
conditions and usually they simplify the mathematics of the problem. However, there
are also situations in which the model of a confined quantum system can be used as a
good approximation. A prominent field where confined quantum systems are important is
semiconductor physics and in particular quantum wells, wires, and dots. In section 2 we
will give an overview of the history of confined quantum systems from its discovery in
1937 until recent years.

It is not our intention here to develop a theory for a specific experimental situation, we
rather want to demonstrate for a simple model system the effects which may occur. We
concentrate on a hydrogenic system, i.e. a particle moving in a Coulomb potential. As a non-
standard boundary in our problem we consider a paraboloid with the Coulomb centre located
at the focus. The motivation for taking a paraboloid is more of a mathematical origin than
of a physical one: This type of boundary can easily be described in parabolic coordinates,
and using them to solve the three-dimensional Schrödinger equation allows for a separation
into three ordinary differential equations. The possibility for a separation of variables is
the basis for many theoretical investigations. In the context of confined quantum systems
the starting point for analytical calculations is to find all coordinate systems in which the
Schr̈odinger equation of the system separates. Then the surfaces of a constant coordinate
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are the natural boundaries for which confinement of the system can be taken into account
in the easiest way.

Our choice of the boundary in the form of a paraboloid is based on the separability of
the Schr̈odinger equation in parabolic coordinates. The fact that the standard solutions with
boundary conditions at infinity have a quite simple analytical form makes this problem even
more attractive at least from a mathematical point of view.

Little work has been done for this case. Youet al [1] were the first to use this as a
model for a substitutional and/or interstitial surface atom. They were only interested in
the ground state. More extensive work has been done by Ley-Koo and Garcı́a-Casteĺan
[2]. They also considered the energy shift of some excited states, and for the ground state
they calculated the hyperfine splitting and the electric dipole moment. It is the purpose of
this paper to give a more complete picture of the energy spectrum, not only for the first
few excited states. We will discuss the properties of the whole (discrete) spectrum and in
particular we will consider the most interesting case, namely when there is a large shift of
the energy levels.

In section 3 we investigate by using analytical methods the properties of a hydrogen
atom confined in a paraboloidal geometry. We discuss in detail peculiarities in the spectrum
and show some typical examples for the wavefunctions.

In order to gain more insight into the underlying physics we devote section 4 to a
semiclassical analysis of this problem. We will show that the usual Bohr–Sommerfeld
quantization rule has to be modified in the presence of the boundary. When this is taken
into account one finds a very good agreement with the exact solution given in section 3.
Whereas in the free problem the parabolic quantum numbers run from zero to infinity, this
is no longer true for the confined system. Using the semiclassical approach one can get
a more intuitive understanding of why and how these quantum numbers are limited. Of
course, purely numerical methods are an appropriate means for obtaining solutions in many
practical cases. However, the semiclassical approach also offers advantages, mainly in two
respects. (i) As already pointed out, it gives a deeper insight into the physics of the problem
(at the cost of accuracy of the solution). (ii) It is very well suited for the determination
of approximate eigensolutions which in turn can be used as a starting point for an efficient
purely numerical solution.

2. A brief history of confined quantum systems

In most of the familiar stationary problems of quantum mechanics one does not restrict the
size of the system. Then the eigenfunctions are calculated uniquely by requiring that they
should vanish at infinity. In certain physical situations, however, it is useful to consider a
model where a system is confined by infinitely high potential walls. Then the wavefunction
of the system has to vanish on a certain boundary which lies at finite distances but may
extend until infinity. It is the aim of this section to give an overview of the history of such
confined quantum systems. We will list all the systems which (to our knowledge) have been
investigated, and discuss practical applications. A more detailed discussion of this history
can be found in [3].

2.1. Confined atoms and molecules

Historically, a confined hydrogen atom was considered for the first time by Michelset al
[4]. Similar investigations have been performed for hydrogen [5, 6] and helium [7, 8]
in spherical boxes. The WKB-approximation in this context was used for the first time
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by Dingle [9]. Based on an experiment concerned with hydrogen atoms enclosed inα-
quartz [10] several models in the form of confined quantum systems have been investigated
[11–16]. The case of a hydrogen atom in a soft spherical box was investigated in [23].

When Wigner investigated some aspects of perturbation theory [17] he initiated a series
of papers [18–21] which indirectly contributed to the problem of confined quantum systems.

It is well known that the Schrödinger equation for the hydrogen atom is also separable
in parabolic coordinates. The problem of a hydrogen atom in a symmetrical box with
paraboloidal boundaries was treated in [24]. A simplification consists of dropping one of
the paraboloids. This is exactly the model we will treat in sections 3 and 4.

A further coordinate system which allows for the separation of the Schrödinger equation
is the prolate spheroidal coordinate system. The problem of a hydrogen molecule ion in a
spheroidal box was treated by several authors [25, 26, 15, 27]. The hydrogen molecule in
the same environment was treated in [28, 29] and the hydrogen atom in [24].

Of great importance in surface physics are systems which are bounded by a plane, or
have a plane interface. The mathematically simplest problem of this type is a hydrogenic
system with its centre locatedon the plane surface and has been studied in [30, 31]. The
prolate spheroidal coordinate system also allows for a separation in the case when the
hydrogen atom is located at some distance away from the plane boundary. Investigations
of this type of problem were published in [32–39]. The properties of a hydrogen molecule
near a hard wall were investigated in [40].

2.2. The confined harmonic oscillator

Heretofore we have reported only on systems with Coulomb potentials. The harmonic
oscillator represents another system of central importance to quantum mechanics, and its
properties were also investigated when it is enclosed in hard boxes. In connection with an
astrophysical problem, Chandrasekhar [41] was one of the first to briefly touch upon the
problem of a bounded linear harmonic oscillator. Further work on this problem has been
published in [42–44, 46, 47, 49, 50]. The inverted harmonic oscillator was treated in [48]
and the three-dimensional harmonic oscillator was investigated in [22, 51].

A WKB-treatment of the problem was presented by Vawter [45] together with an exact
solution in the form of series expansions. He found that in general the results of the two
methods are in good agreement but in the case when a classical turning point comes close to
the boundary the semiclassical method becomes inaccurate. We will return to this issue in
section 4 where we discuss the reason for this deviation and give a solution to the problem.

2.3. Other systems and general theories

The most simple confined quantum system is, of course, a free particle in a box. Of
all confined quantum systems one can think of, this is certainly the most simple one and
the solution of the corresponding Schrödinger equation can be found in any introductory
textbook on quantum mechanics. Fowler [22] calculated the polarizability for an electron
in a one-dimensional box and also for three-dimensional spherical and cubic boxes.

The restricted rotor was investigated by Sommerfeld and Hartmann [52] and the
anharmonic oscillator with ax2m-potential (m integer) was treated by Chaudhuri and
Mukherjee [53] who calculated the even- and odd-parity eigenvalues as the roots of explicitly
derived functions.

Apart from solving specific examples there have also been some efforts in developing
more general theories. The earliest paper in this direction was published by Froehlich [54]



4496 D S Krähmer et al

who invented a kind of boundary perturbation theory. A more recent similar approach is
due to Berman [55]. Wassermann [56] developed a very general theory which is not limited
to the Schr̈odinger equation. Naturally, it is very technical and of limited practical use.
Gonda and Gray [57] wrote a paper on boundary perturbation theory along the lines of
ordinary perturbation theory.

Hull and Julius [58] gave a formula for the shift of an energy level of a one-dimensional
system which is valid in the ‘neighbourhood’ of any known solution. This formula was
applied by Singh [26] to the H+2 ion. The method was modified by Gorecki and Byers Brown
[59] to work as an iterative procedure. Two years later they presented a combination of
boundary perturbation theory with a variational technique [60] which can even be applied to
non-separable cases. In their paper they treated for the first time the problem of a hydrogen
atom in a spherical box where the nucleus is fixed off-centre. Variational methods have
been discussed in [61–66].

A completely different approach is based on hypervirial theorems [67]. They may be
used in order to obtain a perturbation expansion for the energy in which each order is
expressed solely in terms of the unperturbed energy [68]. Fernández and Castro [69] used
such hypervirial relations to investigate enclosed quantum systems. In the following two
years they published a whole series of papers in which they applied this method to all kinds
of systems. In the paper by Artecaet al [70] a summary of the method and a comprehensive
list of references can be found.

Finally we want to mention the so-called embedding method developed by Inglesfield
[71] and applied to confined quantum systems by Crampinet al [72].

2.4. Applications

The model of a one-electron atom confined in a hard spherical box has been used in the
context of partially ionized plasmas [73] and for studying thermodynamic properties of
non-ideal gases [74].

Brady and Rowell [75] reported that there is some evidence for the emission of electrons
in rocks under compression up to the point of fracture. It was suggested that a confined
atom could serve as a model for the phenomenon.

Kanorskyet al [76, 77] investigated the properties of foreign atoms implanted in solid
and liquid helium. They observed pressure broadening and a shift of the excitation and
emission lines. They explained the observed spectra by assuming a bubble structure of the
trapping sites for the atoms. A summary can be found in their Les Houches lecture [78].

Electron–electron and electron–hole interactions in small semiconductor crystallites have
been investigated theoretically by, e.g. Brus [79] and Schmidt and Weller [80].

Since the 1980s the most important applications of confined quantum systems are
quantum wells, quantum well wires and quantum dots. The properties of a hydrogenic
impurity in a quantum well was investigated by Bastard [81]. Bryant [82] investigated the
spectrum of an on-axis Coulomb centre in a cylindrical box. Brown and Spector [83] were
the first to generalize this to an off-centre Coulomb potential using a variational method.
The technique of Diamondet al [65] was applied to the same system by Tsonchev and
Goodfriend [84]. Recently, Zhu and Chen [85] examined the problem of an off-centre
Coulomb potential inside a spherical box with a finite potential wall as a model for a
quantum dot.
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Figure 1. Schematic illustration of the model. The nucleus of a single-electron atom resides
at the focus of a paraboloid. The assumption is that the electron cannot penetrate through
this boundary and hence the wavefunction of the electron must vanish on the surface of the
paraboloid.

3. The hydrogen atom with a paraboloidal boundary

When solving partial differential equations analytically the most important issue is the
separability of the equation in order to obtain a set of ordinary differential equations which
can be treated much easier. In the case of the hydrogen atom there are four coordinate
systems in which the Schrödinger equation separates. These are the spherical, parabolic,
prolate spheroidal, and the sphero-conical coordinates (for a review see, e.g. [86, 87]).

In this section we consider a hydrogen atom confined to a region of space which is
bounded by a paraboloid of revolution. The nucleus of the atom is fixed at the focus of the
paraboloid as shown schematically in figure 1. We are interested in all the (bound) states
of this system, their energies and the spatial structure of their wavefunctions.

We first review the parabolic eigenstates of the hydrogen atom in free space and then
derive an implicit analytical solution for the problem with a paraboloidal boundary. As we
will see in this section, there are situations where the energy levels of the confined hydrogen
atom are strongly shifted compared with a free atom. For this ‘strong-shift regime’ we derive
explicit analytical expressions for the eigenstates and eigenenergies. Finally, we investigate
the influence of the boundary on the permanent dipole moments of the eigenstates.

3.1. Review of parabolic eigenstates

Parabolic coordinates are defined by

x =
√
ξη cosϕ y =

√
ξη sinϕ z = 1

2(ξ − η)
where 06 ξ , η <∞ and 06 ϕ < 2π . Figure 2 helps to visually understand the meaning
of the coordinatesξ andη. The Laplacian reads

1 = 4

ξ + η (∂ξ ξ∂ξ + ∂ηη∂η)+
1

ξη
∂2
ϕ

where∂ξ = ∂/∂ξ , ∂η = ∂/∂η and∂ϕ = ∂/∂ϕ. The Schr̈odinger equation(
− h̄

2

2m
1− Ze

2

r

)
ψ = Eψ
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Figure 2. Illustration of parabolic coordinates. We show cuts through surfaces of constantξ

(broken curves) and constantη (full curves). The heavy full curve indicates the position of the
boundary. The coordinateρ =

√
x2 + y2.

for a single-electron atom with nuclear chargeZ|e| reads, in parabolic coordinates,

4

ξ ′ + η′ (∂ξ ′ξ
′∂ξ ′ + ∂η′η′∂η′)ψ + 1

ξ ′η′
∂2
ϕψ +

(
2E′ + 4

ξ ′ + η′
)
ψ = 0 (1)

where we have introduced dimensionless coordinatesξ ′, η′ and energyE′ via

ξ = a0ξ η = a0η
′ E = Ze2

a0
E′

with

a0 = h̄2

Zme2

being the Bohr radius. In the remainder of this paper we will always use these dimensionless
units and therefore drop the primes for simplicity.

We start with an ansatz of the form

ψ(ξ, η, ϕ) = f1(ξ)f2(η)e
imϕ

wherem is an integer. Substituting this ansatz into the Schrödinger equation (1) we find
the equations for the functionsf1 andf2:

∂ξ ξ∂ξf1+
(

1

2
Eξ − m

2

4ξ
+ Z1

)
f1 = 0 (2a)

and

∂ηη∂ηf2+
(

1

2
Eη − m

2

4η
+ Z2

)
f2 = 0 (2b)

whereZ1 andZ2 are constants of separation satisfying the conditionZ1 + Z2 = 1. Since
here we are interested only in bound states with negative energy†, we introduce a new

† It would also be interesting to consider scattering states with positive energy. Because of the specific properties
of a paraboloid, a plane wave travelling along the symmetry axis (without Coulomb potential) would be focused at
the origin and leave the paraboloid in the opposite direction. When we now consider the scattering of an electron
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variable for the energy

E = − 1

2n2
or n = 1√−2E

.

The general solutions of equations (2a) and (2b) which are regular at the origin are

f1(ξ) = ξ 1
2 |m| exp

(
− ξ

2n

)
8( 1

2|m| + 1
2 − nZ1, |m| + 1, ξ/n) (3a)

and

f2(η) = η 1
2 |m| exp

(
− η

2n

)
8( 1

2|m| + 1
2 − nZ2, |m| + 1, η/n) (3b)

where8(α, γ, z) denotes the confluent hypergeometric function. When we impose the
standard boundary conditions,

f1,2→ 0 for ξ, η→∞
we find that the first parameters of the confluent hypergeometric functions must be non-
negative integers, i.e.

1
2|m| + 1

2 − nZ1 = −n1 (4a)

and

1
2|m| + 1

2 − nZ2 = −n2 (4b)

and also that8 simplifies to a Laguerre polynomial

L|m|n1
(z) =

(
n1+ |m|
n1

)
8(−n1, |m| + 1, z).

Summing equations (4a) and (4b) and using the conditionZ1+ Z2 = 1 yields

n = n1+ n2+ |m| + 1 (5)

which means that in free spacen must be an integer.
This completes the result for the parabolic eigenstates and their spectrum. To summarize,

the eigenstates read

ψn1,n2,m(ξ, η, ϕ) = N (ξη)
1
2 |m| exp

(
−ξ + η

2n

)
L|m|n1

(ξ/n)L|m|n2
(η/n)eimϕ

where

N = 1√
πn|m|+2

√
n1!n2!

(n1+ |m|)!(n2+ |m|)!
is the normalization constant, and the corresponding energy eigenvalues are

En = − 1

2n2
= − 1

2(n1+ n2+ |m| + 1)2
.

and take into account the Coulomb centre, it is clear that it will be scattered from the paraboloid in the direction of
the Coulomb centre independent of its impact parameter. Therefore, even for extremely large impact parameters the
electron will finally interact strongly with the Coulomb potential in extreme contrast to usual scattering situations.
It seems very interesting to investigate the wave mechanical equivalent, however, it is not clear how to formulate
the asymptotic wavefunction which is the key point in scattering theory.
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3.2. The solution with a paraboloidal boundary

We now change the boundary conditions to

f1(ξ = ∞) = 0

and

f2(η = η0) = 0.

Solutions (3a) and (3b) are still valid. However, with the new boundary conditions the
energy parametern will no longer be an integer. We therefore replace the symboln by ε.
Since we did not change the boundary condition for theξ -coordinate, the solutionf1 still
simplifies to a Laguerre polynomial. The only difference is thatn has to be replaced byε,
i.e.

f1(ξ) = (−1)n1n1!ξ
1
2 |m| exp

(
− ξ

2ε

)
L|m|n1

(ξ/ε). (6)

However, the functionf2 is no longer a simple polynomial. The only thing necessary
is to eliminateZ2 from the first parameter of8 in equation (3b). By usingZ1 + Z2 = 1
and equation (4a) with n replaced byε, we find for this first parameter

1
2|m| + 1

2 − εZ2 = n1+ |m| + 1− ε. (7)

Hence, we can write

f2(η) = η 1
2 |m| exp

(
− η

2ε

)
8(n1+ |m| + 1− ε, |m| + 1, η/ε)

and the equation

8(n1+ |m| + 1− ε, |m| + 1, η0/ε) = 0 (8)

determines the eigenvalues implicitly.

3.3. The strong-shift regime

It is a numerical task to extract the eigenvaluesε from equation (8). However, in a certain
regime we can solve this equation approximately. For this purpose we use an expansion
[88] of the confluent hypergeometric function8 in terms of Bessel functions

8(α, γ, z) = 0(γ )ez/2
(

1

2
γ z− αz

)(1−γ )/2 ∞∑
l=0

Al

(
z

2γ − 4α

)l/2
Jγ−1+l

(√
2γ z− 4αz

)
where the coefficientsAl are defined by

A0 = 1 A1 = 0 A2 = 1
2γ

(l + 1)Al+1 = (l + γ − 1)Al−1+ (2α − γ )Al−2.

If the condition∣∣∣∣ z

2γ − 4α

∣∣∣∣� 1 (9)

is fulfilled then we only have to keep the first term of the expansion and we can approximate
the confluent hypergeometric function by

8(α, γ, z) ≈ 0(γ )ez/2( 1
2γ z− αz)(1−γ )/2Jγ−1

(√
2γ z− 4αz

)
.
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In our case the parameters of8 are

α = n1+ |m| + 1− ε
γ = |m| + 1

z = η0/ε

and condition (9) reads
η0

4ε(ε − ñ1)
� 1 (10)

where we have introduced

ñ1 = n1+ 1
2(|m| + 1).

We call inequality (10) the strong-shift condition. It is fulfilled if eitherη0 is small enough
or the energy parameterε is large enough. Then we find forf2 the rather simple expression

f2(η) = J|m|
(

2
√
η
√

1− ñ1/ε
)
. (11)

For the determination of the eigenenergies in this approximation we need the zeros of
the Bessel functions. We denote the(n2− 1)th zero ofJ|m| by j|m|,n2 (> 0):

J|m|(j|m|,n2) = 0 n2 = 0, 1, 2, . . . .

From the quantization condition

J|m|
(

2
√
η0

√
1− ñ1/ε

)
= 0

we find the eigenvalues

ε = ñ1

1− j2
|m|,n2

/(4η0)
. (12)

Since we must always haveε > 0, we immediately see that there exist maximum values
for the quantum numbersn2 and |m|. The semiclassical treatment which is the topic of
section 4 will give a more physical understanding of this fact.

We define(n2)max as the largest integer for a givenm satisfying the inequality

j|m|,n2 6 2
√
η0.

|m|max is defined as the largest integer satisfying the inequality

j|m|,0 6 2
√
η0.

If we chooseη0 small enough so thatj0,0 > 2
√
η0 or η0 < ηc = j2

0,0/4≈ 1.45 (Bohr radii),
then there exist no bound states at all. We will discuss this in more detail in section 4.

Using the eigenvalues (12) and the wavefunction (11), we find for the complete
eigenfunction

ψ̃n1,n2,m(ξ, η, ϕ) = Ñ ξ
1
2 |m| exp

(
− ξ

2ε

)
L|m|n1

(ξ/ε)J|m|
(√
η/η0j|m|,n2

)
eimϕ. (13)

In the appendix we calculate the normalization constantÑ exactly with the result

Ñ = 1

η0J|m|+1(j|m|,n2)
√
πn|m|+1

√
n1!

(n1+ |m|)!
(
ε

η0
ñ1+ 1

6
+ |m|

2− 1

3j|m|,n2

)−1/2

. (14)
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3.4. Discussion

In the preceding section we have calculated the spectrum and wavefunctions for the Coulomb
problem with the new boundary condition. In this section we discuss these results, in
particular, we will show how levels are shifted, how previously degenerate levels split, and
how the wavefunctions are deformed by the boundary.

The spectrum of a hydrogen atom in free space is highly degenerate. The level with
principal quantum numbern has a degeneracyn2. The reason for this degeneracy is the
conserved spherical angular momentum symmetry and the conserved Runge–Lenz vector.
By imposing the paraboloidal boundary these symmetries are broken and, therefore, the
degeneracy is, at least partially, removed. Indeed, we have seen from our calculations that
the eigenenergies depend onn1, n2 and|m| (but not on the sign ofm). Therefore, the levels
with m = 0 are non-degenerate whereas all other levels are twofold degenerate.

Let us now discuss what happens to a single (n2-fold degenerate) leveln of a hydrogen
atom when we put the boundary atη = η0. If this boundary is very far away, so that
classically the electron cannot reach it, then practically speaking the level remains degenerate
as it was before. However, in a situation where the boundary is close to the nucleus, the
splitting becomes larger and at a certain smaller value ofη0 it becomes important. For even
smallerη0 the original level with quantum numbern will be split up in 1

2(n
2 + n) levels

with increased energy. This number is the sum

n−1∑
m=0

n−m−1∑
n1=0

1

which counts the number of levels with different quantum numbersn1, n2, and |m|
(regardless of the sign ofm) all belonging to the manifold labelled withn.

As we have seen in the preceding sections there are maximum allowed values forn2

and |m| which depend onη0. If we continue to decreaseη0 and monitor the corresponding
spectrum we will see that one level after the other will vanish which means that they are
no longer bound states. This can clearly be seen in figure 3.

Heretofore we have looked at what happens to asingle degenerate level of the
unperturbed spectrum (without the boundary) characterized by the quantum numbern. A
slightly different way of looking at the spectrum is to consider several unperturbed levels
simultaneously. In figure 4 we represent the spectrum by plotting the unperturbed levels
n = 1, . . . ,6 and their splitting as a function ofη0. However, for the sake of clarity we do
not showall splitted levels but only a few of them.

We start by considering a small value ofη0, i.e. η0 < ηc. In this case there are no
bound states at all. This means that there are no levels with negative energy, but there are
discrete levels in the effective potential for motion in theη-direction. The corresponding
wavefunction has the character of a bound state only in theη-coordinate whereas it has the
character of a scattering state in theξ -coordinate. Pictorially, this means that the electron is
confined to regions in space which have the shape of paraboloids. The electron is localized
in the η-coordinate but is delocalized in theξ -coordinate.

When we increaseη0, then atη0 = ηc something happens: in the effective potential for
the motion in theη-direction the lowest level has zero energy. For a slightly larger value
of η0 the lowest level in the effective potential moves to a negative energy. In this case the
only allowed value forn2 is zero, that is,(n2)max= 0. However, in theξ -direction we have
all values ofn1 = 0, 1, . . . . This means that atη0 = ηc a whole set consisting of infinitely
many levels (bound states) appears, with quantum numbersn2 = 0 , n1 = 0, 1, 2, . . . and
m = 0. At another, larger value ofη0 the second level in the effective potential crosses the
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Figure 3. Splitting of the single, degenerate leveln = 5 of
free hydrogen. With decreasingη0 the single level splits
into 15 levels with an increased energy. Each of these
levels vanishes at certain values ofη0, meaning that the
corresponding state is no longer a bound state.

Figure 4. Part of the spectrum of a confined
hydrogen atom as a function ofη0. For very
small values ofη0 there are no bound states and
therefore no levels. Then, for increasingη0, levels
corresponding to bound states appear. At certain
discrete values ofη0 whole sets of infinitely many
levels are born and gradually go down to their
unperturbed values. Of course, only a few of them
are shown in the figure.

zero-energy line and another set with infinitely many levels appears in the spectrum. They
have the quantum numbersn2 = 1, n1 = 0, 1, . . . . The same thing happens every time a
level crosses the zero-energy line in the effective potential. In figure 4 we plot the spectrum
as a function of the parameterη0. At discrete values ofη0 one can see the birth of level
sets. For clarity we have drawn only a few levels.

Finally, we discuss the spatial wavefunction of some eigenstates. There are two classes
of states distinguished by the effect of the boundary on them. The parabolic eigenstates
of a free hydrogen atom are well known, and they are the appropriate set of states to be
used as a starting point for our problem. The two parabolic quantum numbersn1 andn2

are associated with the coordinatesξ andη. Let us first consider the casen1 > n2. This
means that in theξ -direction there is a higher excitation than in theη-direction. When we
recall the geometrical meaning ofξ andη from figure 2 we see that in this case the electron
cloud is concentrated in the region with positivez-values, as can be seen in figure 5(a).
Analogously, forn1 < n2 it is concentrated in the region with negativez-values, shown in
figure 5(c). In free space the state with parabolic quantum numbersn1, n2 and the state with
n1 andn2 exchanged are perfectly symmetric with respect to the planez = 0. However, if
we include the boundary then we break the symmetry. In this case the states withn1 > n2

fit better into the space left by the boundary because the shape of the wavefunction is similar
to that of the boundary. On the contrary, in the casen1 < n2 the wavefunction does not
fit at all into the space left by the boundary. This causes a dramatic change in the electron
distribution and also a large shift of the energy of the corresponding level.
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Figure 5. Typical wavefunctions of atomic hydrogen with and without a paraboloidal boundary.
(a) n1 = 10, n2 = 0, m = 10 without a boundary. (b) n1 = 10, n2 = 0, m = 10 with a
boundary. (c) n1 = 0, n2 = 4, m = 3 without a boundary. (d) n1 = 0, n2 = 4, m = 3 with a
boundary. The coordinateρ =

√
x2 + y2.

In the first case, wheren1 > n2, the electron distribution is more localized as can be
seen from figure 5(b). In the other case, wheren1 < n2, there is a strong delocalization,
clearly seen in figure 5(d). This radically different behaviour can be understood by looking
at wavefunctions (6) and (11) for theξ - andη-coordinates, respectively. The only difference
between equation (6) and the unperturbed wavefunction (3a) is thatξ/n is replaced byξ/ε,
where, in the strong-shift regime,ε is considerably larger thann. From this it follows
that the wavefunction is stretched in the positiveξ -direction and therefore extends towards
largerz-values.

In theη-coordinate an opposite effect occurs. The number of zeros in the wavefunction
does not change by taking into account the boundary but the extension of the wavefunction
is now limited to a smaller range inη. Therefore, in theη-coordinate the wavefunction is
squeezed in such a way that all oscillations fit into the space available in theη-direction. In
summary, the effect of the boundary is a stretching of the wavefunction in theξ -direction
and a squeezing in theη-direction. This explains the localization in the casen1 > n2 and
the delocalization in the casen1 < n2.

Finally, we want to give some numbers in order to demonstrate in which situations the
boundary becomes important. For this purpose we consider an atom initially in the parabolic
eigenstaten1 = 0, n2 = 60 andm = 0, i.e. with quantum numbern = 61. It turns out that
an electron in this state acquires anε ≈ 100 when the boundary is atη0 = 104 (Bohr radii).
This means that an atom in such a Rydberg state starts to feel the boundary when it is at
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distances of the order of 1µm.

3.5. Permanent dipole moments

It is a property of the parabolic eigenstates of hydrogen that they possess a permanent
dipole moment [89]. Indeed, this property explains why these coordinates are so useful in
describing the Stark effect [89] The dipole moment has zerox- andy-components and only
the z-component is non-vanishing

e〈z〉 = 3
2ea0n(n1− n2).

In free space there aren2 degenerate levels which can be superposed in such a way as
to obtain an energy eigenstate with vanishing permanent dipole moment. For example, the
spherical eigenstates do not possess a permanent dipole moment and they can be decomposed
in parabolic eigenstates. When we take into account the paraboloidal boundary condition
we break the symmetry of the system with respect to thex-y-plane and the atom acquires a
permanent dipole moment. Because of the level splitting it is no longer possible to superpose
degenerate eigenstates in order to obtain an eigenstate without permanent dipole moment.

For the strong-shift regime discussed in section 3.3 it is possible to calculate the
expectation value ofz exactly by making use of the wavefunction (13) and its normalization
(14). In the appendix we find the result

〈z〉 =
{
ε2[6n1(n1+ |m| + 1)+ (|m| + 1)(|m| + 2)]

−η2
0

(
1

10
+ 2(|m|2− 4)

15j2
|m|,n2

+ 4(|m|2− 4)(|m|2− 1)

15j4
|m|,n2

)}

×
[

4εñ1+ 4η0

(
1

6
+ |m|

2− 1

3j2
|m|,n2

)]−1

. (15)

In figure 6 we plot〈z〉 for an atom in free space and for the case with a boundary at
η0 = 100. It can clearly be seen that the permanent dipole moments with the paraboloidal
boundary are up to one order of magnitude larger than without the boundary. This effect
occurs because the electron cloud is pushed in the positivez-direction due to the presence
of the boundary.

4. A WKB-analysis

The preceding section was devoted to the problem of a hydrogen atom confined to the inside
of a paraboloid. We have presented an implicit analytical solution and, in particular, have
considered the case which is most interesting: when the energy levels are strongly shifted—
the so-called strong-shift regime. For this regime we have found explicit analytical solutions
for the wavefunctions, the eigenenergies, and also for the permanent dipole moments. It is
desirable to obtain explicit analytical solutions also for the lower energy regime. From this
we could learn more about the transition into the strong-shift regime. It is the purpose of this
section to present a semiclassical calculation of the spectrum using the WKB-approximation
and to simultaneously illuminate the underlying physics.

We start by recalling the differential equations of the preceding section and transforming
them into a suitable form for the semiclassical treatment. We then apply in a ‘naive’ way the
WKB-approximation to the problem with the paraboloidal boundary and show that it leads
to inconsistencies under certain conditions. An improved semiclassical treatment enables
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Figure 6. Permanent dipole moments of parabolic eigenstates withm = 5 (a) in free space and
(b) with a paraboloidal boundary atη0 = 100. Note the different scales on the vertical axes.

us to remove the inconsistencies of the naive approach and to present the correct Bohr–
Sommerfeld quantization rule which is appropriate for our problem. Finally, we give a
criterion which allows one to decide whether a specific level is considerably shifted due to
the boundary or not.

4.1. Formulation of the problem

In the preceding section we have found the equations

∂ξ ξ∂ξf1+
(
− 1

4ε2
ξ − m

2

4ξ
+ Z1

)
f1 = 0 (16a)

and

∂ηη∂ηf2+
(
− 1

4ε2
η − m

2

4η
+ Z2

)
f2 = 0 (16b)

determining the wavefunctionsf1 and f2 corresponding to theξ - and η-coordinates. As
in the preceding section,Z1 andZ2 are the constants of separation satisfying the condition
Z1 + Z2 = 1. We recall that in free spaceε is an integer but this is no longer true for the
case with the paraboloidal boundary. From equation (7) we know that

Z2 = 1− ñ1

ε

where

ñ1 = n1+ 1
2|m| + 1

2

and n1 is a non-negative integer. This allows us to eliminate the separation constantZ2

from equation (16b). We then find

f ′′2 +
1

η
f ′2 +

(
− 1

4ε2
+ 1− ñ1/ε

η
− m2

4η2

)
f2 = 0.

We remove the first-order derivative term by putting

f2(η) = η−1/2w(η).
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For w(η) we obtain the ‘Schr̈odinger equation’

w′′(η)+
(
− 1

4ε2
− Ṽ (η)

)
w(η) = 0 (17)

with the effective potential

Ṽ (η) = −1− ñ1/ε

η
+ m

2− 1

4η2
.

Note that this potential depends viaε on the energy.
For a WKB treatment of the differential equation (17) it is necessary to modify the

effective potential in the following way

V (η) = −1− ñ1/ε

η
+ m2

4η2
. (18)

An analogous procedure is well known in the WKB treatment of the hydrogen atom in
spherical coordinates where the centrifugal terml(l+1)/r2 is replaced by(l+ 1

2)
2/r2. This

is the so-calledLanger-modification[90] although it was suggested earlier by Kramers [91].
For a thorough discussion of it see, e.g. [92]. The reason for this is the singularity of the
potential at the origin. Note that the exact result is also obtained without this replacement
using supersymmetric WKB [93].

The momentum of the electron in this potential is given by

p(η) =
√
− 1

4ε2
− V (η).

The classical turning pointsη± satisfy the conditionp(η±) = 0 and with the potential (18)
turn out to be

η± = 2ε2

(
1− ñ1

ε

)
± 2ε2

√(
1− ñ1

ε

)2

− m2

4ε2
. (19)

By using the relations

η+η− = ε2m2

η+ + η− = 4ε2(1− ñ1/ε)

we can write the square of the momentum in the simple form

p2(η) = − 1

4ε2
− V (η) = 1

(2εη)2
(η+ − η)(η − η−).

To write down the WKB solution we need the integral∫ η

η−
p(η′) dη′ = 1

2ε

∫ η

η−

1

η′
√
(η+ − η′)(η′ − η−) dη′

which yields∫ η

η−
p(η′) dη′ = 1

2ε

[√
(η+ − η)(η − η−)+ η+ + η−

2
arcsin

2η − η+ − η−
η+ − η−

−√η+η− arcsin
η+ + η− − 2η+η−/η

η+ − η− + π
2

(
η+ + η−

2
−√η+η−

)]
. (20)

We can recover the standard result for free space by taking the upper limit of integration
equal to the right turning pointη+ and applying Bohr–Sommerfeld quantization

2
∫ η+

η−
p(η) dη = π

ε

(
η+ + η−

2
−√η+η−

)
!= 2π

(
n2+ 1

2

)
n2 = 0, 1, 2, . . . .
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This leads to the result

ε = n1+ n2+ |m| + 1

which coincides with the exact result (5) of the full quantum calculation.

4.2. Naive WKB-approximation

We now concentrate on the case with the paraboloidal boundary. Whether or not there is a
shift of the energy levels in a naive WKB picture depends on the value of the energy under
consideration as is shown in figure 7. If the energy is small enough such thatη+ < η0 then
in a classical picture the electron does not feel the boundary and, therefore, there will be
no considerable shift of the energy level:

ε = n1+ n2+ |m| + 1 for η+ < η0. (21)

However, for sufficiently high excited states, i.e.η0 < η+, the electron does reach the
boundary and the energy levels in this regime are shifted considerably. In this case the
usual Bohr–Sommerfeld quantization∮

p dη = 2π(n2+ 1
2) (22)

must be modified because the WKB wavefunction

f2(η) ≈ 1√
p(η)

sin

(∫ η

η−
p dη + π

4

)
has tovanish at η = η0, i.e.

sin

(∫ η0

η−
p dη + π

4

)
!= 0

which leads to

2
∫ η0

η−
p dη = 2π(n2+ 3

4). (23)

From this and equation (20) we find

ε = n1+ n2+ |m| + 5

4
− 1

2πε

√
(η+ − η0)(η0− η−)

+ 1

π

(
ε − n1− 1

2
|m| − 1

2

)
arccos

2η0− η+ − η−
η+ − η−

+|m|
2π

arccos
η+ + η− − 2η+η−/η0

η+ − η− for η+ > η0. (24)

Note that the right-hand side of this equation depends onε explicitly as well as implicitly
via η±(ε). In order to findε from this equation one must use numerical methods.

If we compare the two results (21) and (24) for the limiting caseη0 → η+ one finds
two different results forε, namely

ε = n1+ n2+ |m| + 1 (equation (21) forη0→ η+−)

and

ε = n1+ n2+ |m| + 5
4 (equation (24) forη0→ η++).

This fact is due to an abrupt change in the Bohr–Sommerfeld quantization where the term
1
2 of equation (22) is replaced by34 for higher energies. However, as we can now see,
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Figure 7. Level-shift and level-non-shift situation in a naive WKB picture. In (a) the considered
energy is low enough so that the right turning point does not reach the boundary. In such a
situation there will be no considerable shift of the energy level. In (b), however, the energy is
high enough so that the right turning point does reach the boundary. This leads to a considerable
shift of the energy level. Notice the energy dependence of the potential.

this abrupt change leads to unphysical results. Therefore, it is necessary to find a smooth
transition between the two quantization rules of the form∮

p dη = 2π(n2+ 1
2 + δ(ε)) (25)

with an energy-dependent correctionδ. In the limiting cases for small energies(η+ � η0)

δ ≈ 0 and for high energies(η+ � η0) δ ≈ 1
4. In the next section we will derive the

function δ(ε). We note that a similar modified quantization condition has been derived by
Bestleet al [94] in the context of corner scattering of WKB waves. Friedrich and Trost
[95, 96] proposed replacing the usual phaseπ/4 in the WKB wavefunction by a different
value (depending on the potential under consideration) in cases where a wave is reflected
from a potential. This can also lead to a modified quantization formula as in (25).

4.3. Improved WKB-approximation

The procedure for deriving the functionδ is as follows. First we linearize the potential (18)
aroundη̂ ≡ min(η0, η+). Then we solve equation (17) with the linearized potential exactly
in terms of Airy functions. By writing this exact solution in a semiclassical approximation
and comparing it with the WKB solution of the linearized potential we find the functionδ.
This procedure leads to expressions which are slightly different for the two casesη+ > η0

andη0 > η+. Therefore, it is necessary to treat them separately.
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4.3.1. Right turning point beyond the wall:η+ > η0. In this case we linearize the potential
aroundη̂ = η0 and find

Vlin(η) = V (η0)+ V ′(η0)(η − η0) = V0+ V ′0 · (η − η0)

where we have abbreviatedV ′(η0) by V ′0. The exact solution of the equation

w′′(η)−
(
V0+ V ′0 · (η − η0)+ 1

4ε2

)
w(η) = 0

with the boundary conditionw(η0) = 0 reads

w(η) = α0 Ai

[
−V ′1/30

(
η0− η −

V0+ 1
4ε2

V ′0

)]
− α0q0 Bi

[
−V ′1/30

(
η0− η −

V0+ 1
4ε2

V ′0

)]
where

q0 ≡
Ai
[(
V0+ 1

4ε2

)
V
′−2/3

0

]
Bi
[(
V0+ 1

4ε2

)
V
′−2/3

0

] . (26)

α0 is an arbitrary constant and Ai and Bi denote the two independent Airy functions. Both
of them are solutions of the differential equationw′′ − zw = 0 and have an oscillatory
behaviour for real, negative argument. Whereas Ai decays exponentially for real, positive
argument, Bi increases exponentially.

Since the argument of the Airy functions is negative we can use the asymptotic
expansions

Ai(z) ≈ |z|
−1/4

√
π

sin

(
2

3
|z|3/2+ π

4

)
Bi(z) ≈ |z|

−1/4

√
π

cos

(
2

3
|z|3/2+ π

4

)
 for |z| � 1, z < 0

and find

w(η) ∼ sin

2

3
V
′1/2

0

(
η0− η −

V0+ 1
4ε2

V ′0

)3/2

+ π
4
− Arctanq0

 . (27)

Here Arctan denotes the multivalued inverse function of tan, i.e. Arctanq0 = arctanq0+νπ ,
where arctan denotes the principal branch andν is an integer.

On the other hand, we can directly write down the WKB solution for the linearized
potential. The oscillating part of it reads

sin

(∫ η

η−
p dη + π

4

)
= sin

(∫ η0

η−
p dη −

∫ η0

η

p dη + π
4

)
≈ sin

(∫ η0

η−
p dη −

∫ η0

η

√
− 1

4ε2
− Vlin(η) dη + π

4

)
= − sin

[
−
∫ η0

η−
p dη + 2

3
V
′1/2

0

(
η0− η −

V0+ 1
4ε2

V ′0

)3/2

− 2

3V ′0

(
− 1

4ε2
− V0

)3/2

− π
4

]
.
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This expression has to equal equation (27) which leads to

2
∫ η0

η−
p dη = 2π

(
n2+ 1

2

)
+ 2 Arctanq0− 2

3V ′0

(
− 1

4ε2
− V0

)3/2

= 2π

(
n2+ 1

2
+ δ0

)
wheren2 is a positive integer or zero and the correctionδ0 is defined by

δ0 = 1

π
Arctanq0− 2

3π

1

V ′0

(
− 1

4ε2
− V0

)3/2

. (28)

Let us discuss the special caseη+ � η0� 1. Then from equation (18) we can estimate
V0 ≈ −1/η0 and V ′0 ≈ 1/η2

0 and hence|V0/V
′2/3

0 | ≈ η
1/3
0 � 1. Thus we can use the

asymptotic expansions for the Airy functions in (26) and find

q0 ≈ tan

2

3

(
−V0+ 1

4ε2

V
′2/3

0

)3/2

+ π
4

 .
We therefore obtain the correctionδ0 = 1

4. Substituting this result into equation (25) shows
perfect agreement with equation (23).

Another special case isη+ = η0. Thenq0 = Ai(0)/Bi(0) = 1/
√

3 and

δ0(εc) = 1

π
Arctanq0 = 1

6
. (29)

4.3.2. Wall beyond the right turning point:η0 > η+. In this case we linearize the potential
aroundη̂ = η+ and find

Vlin(η) = V (η+)+ V ′(η+)(η − η+) = V+ + V ′+ · (η − η+)
where we have abbreviatedV ′(η+) by V ′+. The exact solution of the equation

w′′(η)−
(
V+ + V ′+ · (η − η+)+

1

4ε2

)
w(η) = 0

with the boundary conditionw(η0) = 0 reads

w(η) = α+ Ai[V ′1/3+ · (η − η+)] − α+q+ Bi[V ′1/3+ · (η − η+)]
where

q+ ≡ Ai[V ′1/3+ · (η0− η+)]
Bi[V ′1/3+ · (η0− η+)]

(30)

and α+ is an arbitrary constant. Again we use the asymptotic expressions for the Airy
functions and find

w(η) ∼ sin

[
2

3
V
′1/2
+ (η+ − η)3/2+ π

4
− Arctanq+

]
. (31)

On the other hand, the WKB solution for the linearized potential has the oscillatory part

sin

(∫ η

η−
p dη + π

4

)
= sin

(∫ η+

η−
p dη −

∫ η+

η

p dη + π
4

)
≈ sin

(∫ η+

η−
p dη −

∫ η+

η

√
− 1

4ε2
− Vlin(η) dη + π

4

)
= − sin

(∫ η+

η−
p dη + 2

3
V
′1/2
+ (η+ − η)3/2− π

4

)
.
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This must equal equation (31) which leads to

2
∫ η+

η−
p dη = 2π(n2+ 1

2)+ 2 Arctanq+ = 2π(n2+ 1
2 + δ+)

where we have defined

δ+ = 1

π
Arctanq+. (32)

For the caseη0� η+ we already know that the correctionδ+ must be very small. Indeed,
the argument of the Airy functions in (30) is large and positive and, therefore,q+ is
exponentially small. It follows that in (32) we must have Arctanq+ = arctanq+, i.e.
ν = 0, in order to haveδ+ = 0 which together with (25) agrees with (22). The other special
case isη0 = η+ which again yieldsδ+ = 1

6. This shows that the transition fromη0 > η+
to η0 < η+ no longer produces an abrupt change in the quantization rule.

A subtle point remains to be discussed concerning the multivalued function Arctanq0 =
arctanq0+ νπ and how to determine the correct integerν.

4.3.3. Discussion ofArctanq0. In order to understand the meaning of Arctanq0 in our
context it is best to consider a situation with fixedη0 and variableη+ (or energy parameter
ε). Let us start with a value ofε such thatη+ � η0. In this case the argument of the Airy
function in (30) is exponentially small. Forη+ � η0 there must not be any phase shift
at all and, therefore, we have to take the principal branch of Arctan as already discussed
in the preceding section. Now we increaseε up to the value whereη+ = η0. In this
case the argument of the Airy function vanishes andq+ = q0 = 1/

√
3. We still have

to take the principal branch of Arctan and obtain the correctionδ = 1
6. We increaseε

further. Now we have to consider the Airy functions of (26). Their argument is negative
and hence both nominator and denominator are oscillatory functions. For a certain value
of ε the function Bi vanishes for the first time. Just before that, the argument of Arctan is
∞ and its (principal) value isπ/2. Just after the first zero of Bi, the argument of Arctan
is −∞. The correctionδ should be a continuous function which, at this point, requires
Arctan(−∞) = arctan(−∞)+ 1 ·π = −π/2+π = π/2. This means that we have to jump
to the next branch of Arctan. This happens at all zeros of Bi.

4.4. The unified quantization rule

We are now in a position to unify, at least formally, the quantization rules for the two cases
discussed in sections 4.3.1 and 4.3.2. For this purpose it is convenient to introduce

V(η̂) ≡ 1

(2ε)2/3
(η0− η+)(η̂ − η−)

[η+(η̂ − η−)− η−(η+ − η̂)]2/3
.

With the convention̂η ≡ min(η0, η+) one can verify that

q = Ai V(η̂)
Bi V(η̂)

is identical toq0 andq+, respectively, depending on whetherη̂ = η0 or η̂ = η+. With these
definitions we can formulate the unified quantization rule as∮

p dη = 2
∫ η̂

η−
p dη = 2π(n2+ 1

2 + δ(η̂))



The parabolically confined hydrogen atom 4513

Figure 8. Example for the correction functionδ, equation (33), forn1 = 0,m = 0 andη0 = 100.

where

δ(η̂) = 1

π
arctan

Ai V(η̂)
Bi V(η̂) + ν −

2

3π
θ(η+ − η0)|V(η̂)|3/2. (33)

Hereν is the number of zeros of BiV(η̂) betweenV(η̂) and 0, andθ denotes the unit step
function. Figure 8 shows the correctionδ as a function ofε for a specific choice ofn1, m,
andη0.

The question which remains to be answered is how to fixη̂, i.e. how to decide in
advance whether̂η = η+ or η̂ = η0 for given n1, n2, m, and η0. This problem will be
discussed in the next section.

4.5. A criterion for level shift

Finding out which value to choose for̂η, at the same time answers the question whether
a given level specified byn1, n2, andm is shifted when one requires the wavefunction to
vanish atη0. The reason is as follows. If it turns out thatη̂ = η+, i.e. min(η0, η+) = η+
or η+ < η0, then according to our naive WKB approach of section 4.2 there is no shift at
all and the improved WKB method predicts only a slight shift. On the other hand, when
η̂ = η0 then classically the electron bounces against the boundary and a considerable shift
of the energy level is expected.

For the following it will be useful to define a critical value ofε by

η+(ε = εc) = η0.

Hence,ε = εc corresponds to a situation where the right turning point exactly reaches the
boundary. Note thatεc depends onn1, m, and, of course, onη0. Using equation (19) for
η± we obtain

εc =
2η0ñ1+ η0

√
4ñ2

1+ 4η0−m2

4η0−m2
.

However,εc actually is the solution ofη0 = η±(ε) because we had to take the square while
solving this equation. Whetherη+(εc) = η0 or η−(εc) = η0 depends on|m| and n1. εc

switches fromη+ = η0 to η− = η0 whenη+ = η−. Physically this means that the minimum
of the potential lies exactly atη = η0. This behaviour defines a critical value for|m|
(depending onn1) which turns out to be

|m|c = 1
2

√
(n1+ 1

2)
2+ 4η0− 1

2(n1+ 1
2).

In figure 9 we demonstrate some typical cases and the role ofεc and |m|c. For
0 6 |m| 6 |m|c there are some levels which are almost unshifted, that is, for some values
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Figure 9. Interplay between the critical valuesεc and |m|c. (a) ε = εc, 0 6 |m| 6 |m|c. The
energy is chosen in such a way that the right turning point exactly reaches the boundary. There
may be some unshifted levels withε < εc. (b) ε = εc, |m| = |m|c. In this case the left and right
turning points are identical and equal toη0. This defines the critical value of|m|. (c) ε = εc,
|m| > |m|c. Here no unshifted levels can exist. Depending on the value of|m| there may be
some strongly shifted levels. (d) ε > εc, |m|max > |m| > |m|c. For values ofε larger thanεc

the minimum of the effective potential moves a little bit towards smaller values ofη. As long
as |m| is smaller than|m|max there exist some levels which are strongly shifted.

n2 = 0, 1, 2, . . . , (n2)c we haveη̂ = η+. The value(n2)c is reached forη+ = η0. In this
specific situation we have

2
∫ η+

η−
p(η) dη = 2π((n2)c+ 1

2 + δ(εc))

or together with equation (29)

εc− n1− |m| − 1
2 = (n2)c+ 1

2 + 1
6.

This yields

(n2)c = εc− n1− |m| − 7
6 for |m| < |m|c.

The number of levels with energy less than zero in the potential (18) with a boundary at
η = η0 is finite. Therefore, there exists a maximum for the quantum numbern2, denoted by
(n2)max. Its value can be derived by taking the limitε →∞ of equation (24) and solving
for n2. The calculation leads to the result

(n2)max= 1

π

√
4η0−m2− |m|

π
arccos

|m|
2
√
η0
− 3

4
.

Note that(n2)max does not depend on the quantum numbern1. For alln2 with (n2)c < n2 <

(n2)max the corresponding levels are considerably shifted. It might occur that(n2)max= 0.
This defines a maximum value of|m| since for larger values of|m|, (n2)max becomes
negative and there are no bound states at all. Unfortunately,|m|max cannot be calculated
analytically but must be found numerically as the solution of the transcendental equation

1

π

√
4η0− |m|2max−

|m|max

π
arccos

|m|max

2
√
η0
= 3

4
.
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Table 1. This table serves as a guide how to determineη̂ for given values of|m| andn2.

|m| n2 η̂

06 n2 6 (n2)c η+
06 |m| 6 |m|c (n2)c < n2 < (n2)max η0

|m|c < |m| 6 |m|max n2 = 0, 1, 2, . . . , (n2)max η0

|m| > |m|max n2 = 0, 1, 2, . . . no bound states

Figure 10. Comparison of the improved WKB calculations with the exact result. Here we plot
the dependence of then = 3 levels for free hydrogen onη0. The agreement of the two results
is very good.

An upper limit for |m|max is given by

|m|max< 2
√
η0.

Table 1 summarizes the results of this section and serves as a guide for the determination
of η̂.

In figure 10 we compare the result of the semiclassical calculation with the exact result
of the preceding section and find an excellent agreement between the two results.

The fact that the effective potential for the motion in theη-direction depends on the
energy, makes it necessary to introduce the critical and maximum values of|m| andn2 and
to distinguish all the different cases as we have done it. However, once this is established
one can easily predict whether an arbitrary level specified by the quantum numbersn1, n2,
andm is shifted or not.

We conclude this section by noting that the WKB solution not only highlights the
underlying physics of the problem but also is very useful for the determination of
approximate energy eigenvalues and eigenfunctions. It is an advantage of the semiclassical
method that the quantum numbers of the solution can be specified in advance. The
semiclassical solution which is obtained for these specific quantum numbers can then be
used as a starting point for a purely numerical method.

5. Summary

In this paper we have presented a brief history of confined quantum systems, in particular,
we have summarized the work which has been done on confined atoms, molecules, harmonic
oscillators and a few other systems. We have also described the theoretical methods which
have been used for treating these systems. We then concentrated on the hydrogen atom as
our model system and discussed the separability of the hydrogenic Schrödinger equation
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in various coordinate systems. We chose the parabolic coordinates for our studies and
considered a hydrogen atom confined to a space with a paraboloidal boundary where the
nucleus of the atom is fixed at the focus of the paraboloid. We have derived an exact implicit
analytical solution for the energy eigenvalues of the bound states and for the wavefunctions.
In the case where the energy levels are strongly shifted compared with a free atom—in the
so-called strong-shift regime—we have also found explicit solutions for the eigenenergies
and the eigenfunctions. In the last section we have applied semiclassical methods in order
to gain deeper insight into the physics of the problem. Finally, we have derived a modified
Bohr–Sommerfeld quantization rule which allows us to calculate the energy eigenvalues
from a transcendental equation with a very good accuracy.
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Appendix. Calculations for the strong-shift regime

In this appendix we perform some calculations needed in connection with the strong-shift
regime. We first set up some auxiliary formulae needed for the calculation, then we calculate
the normalization constant of the wavefunction (13) and finally we work out the expection
value of thez-coordinate.

A.1. Auxiliary formulae

Using the orthogonality relation for the Laguerre polynomials [88]∫ ∞
0
xαe−xLαj (x)L

α
k (x) dx = 0(α + j + 1)

j !
δjk (A1)

and the recurrence relation

(n+ 1)Lαn+1(x)− (2n+ α + 1− x)Lαn(x)+ (n+ α)Lαn−1(x) = 0

we find ∫ ∞
0
x|m|+1e−x [L|m|n1

(x)]2 dx = (2n1+ |m| + 1)
(n1+ |m|)!

n1!
(A2)

and∫ ∞
0
x|m|+2e−x [L|m|n1

(x)]2 dx = [(2n1+ |m| + 1)2

+(n1+ 1)((n1+ |m| + 1)+ n1(n1+ |m|)] (n1+ |m|)!
n1!

. (A3)

We will also need several integrals of the type∫ 1

0
xλJ 2

ν (αx) dx.
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For our purposesλ has the values 1, 3 and 5. These integrals can be calculated recursively
using formulae 1.8.3.4∫
xλJ 2

ν (x) dx = λ− 1

λ

(
ν2− (λ− 1)2

4

)∫
xλ−2J 2

ν (x) dx

+x
λ−1

2λ

{[
xJ ′ν(x)−

λ− 1

2
Jν(x)

]2

+
[
x2− ν2+ (λ− 1)2

4

]
J 2
ν (x)

}
and 1.8.3.11 ∫ x

0
xJν(αx) dx = x2

2

[
J ′ν(αx)

]2+ 1

2

(
x2− ν2

α2

)
J 2
ν (αx)

of [97]. In our caseα is a zero ofJν(x) and, therefore, the integrals can be simplified
significantly by using the relation [88]

J ′ν(x) = −Jν+1(x)+ ν
x
Jν(x).

This finally leads to the formulae∫ 1

0
xJ 2

ν (αx) dx = 1
2J

2
ν+1(α) (A4)∫ 1

0
x3J 2

ν (αx) dx =
(

1

6
+ ν

2− 1

3α2

)
J 2
ν+1(α) (A5)∫ 1

0
x5J 2

ν (αx) dx =
(

1

10
+ 2(ν2− 4)

15α2
+ 4(ν2− 4)(ν2− 1)

15α4

)
J 2
ν+1(α). (A6)

A.2. Normalization of strong-shift wavefunction

In section 3 we found for the strong-shift regime the approximate wavefunction (13)

ψ̃n1,n2,m(ξ, η, ϕ) = Ñ ξ
1
2 |m| exp

(
− ξ

2ε

)
L|m|n1

(ξ/ε)J|m|
(√
η/η0j|m|,n2

)
eimϕ

where the energy parameterε is given by equation (12). We now want to calculate the
normalization constant̃N . It is needed in order to evaluate matrix elements, for example
the permanent dipole moments of the eigenstates in the strongly-shift regime.

In parabolic coordinates the volume element is given by(ξ + η)/4. Therefore, we have
to calculate

1=
∫ 2π

0

∫ ∞
0

∫ η0

0
|ψ̃n1,n2,m(ξ, η, ϕ)|2

ξ + η
4

dη dξ dϕ

= Ñ 2π

2

∫ ∞
0

∫ η0

0
ξ |m|(ξ + η)e−ξ/ε [L|m|n1

(ξ/ε)
]2
J 2
|m|
(√
η/η0j|m|,n2

)
dη dξ

where we have inserted the wavefunction (13) and performed integration over the azimuthal
angleϕ. After the substitution

x = ξ/ε y =
√
η/η0

and using equations (A1), (A2), (A4), and (A5) we end up with

1= Ñ 2πη2
0ε
|m|+1 (n1+ |m|)!

n1!
J 2
|m|+1(j|m|,n2)

(
ε

η0
ñ1+ 1

6
+ |m|

2− 1

3j2
|m|,n2

)
which immediately gives the normalization constant (14).
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A.3. Permanent dipole moments

In a similar manner we calculate the permanent dipole moments. This is essentially the
expectation value of thez-coordinate since thex- andy-components vanish. Because

z = ξ − η
2

we have to calculate

〈z〉 =
∫ 2π

0

∫ ∞
0

∫ η0

0

ξ − η
2
|ψ̃n1,n2,m(ξ, η, ϕ)|2

ξ + η
4

dη dξ dϕ

= Ñ 2π

4

∫ ∞
0

∫ η0

0
ξ |m|(ξ2− η2)e−ξ/ε [L|m|n1

(ξ/ε)]2J 2
|m|
(√
η/η0j|m|,n2

)
dη dξ.

Again we substitute

x = ξ/ε y =
√
η/η0

and employ the equations (A1), (A3), (A4), and (A6) and finally arrive at the result (15).
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[3] Kr ähmer D S 1997DissertationUniversity of Ulm
[4] Michels A, de Boer J and Bijl A 1937Physica4 981
[5] Sommerfeld A and Welker H 1938Ann. Phys.32 56
[6] de Groot S R and ten Seldam C A 1946Physica12 669
[7] ten Seldam C A and de Groot S R 1952Physica18 891
[8] ten Seldam C A and de Groot S R 1952Physica18 905
[9] Dingle R B 1953Proc. Camb. Phil. Soc.49 103

[10] Perlson B D and Weil J A 1974J. Magn. Reson.15 594
[11] Suryanarayana D and Weil J A 1976J. Chem. Phys.64 510
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[78] Kanorsky S I and Weis A 1996Quantum Optics of Confined Systemsed M Ducloy and D Bloch (Dordrecht:

Kluwer Academic) p 367
[79] Brus L E 1984J. Chem. Phys.80 4402
[80] Schmidt H M and Weller H 1986Chem. Phys. Lett.129 615
[81] Bastard G 1981Phys. Rev.B 24 4714
[82] Bryant G W 1984Phys. Rev.B 29 6632
[83] Brown J W and Spector H N 1986J. Appl. Phys.59 1179
[84] Tsonchev S I and Goodfriend P L 1992J. Phys. B: At. Mol. Opt. Phys.25 4685
[85] Zhu J-L and Chen X 1994Phys. Rev.B 50 4497
[86] Kalnins E G, Miller W Jr and Winternitz P 1976SIAM J. Appl. Math.30 630
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